A Juicy Dilemma Project # 1 Mat 101

The juice division of Florence-Darlington Foods, Inc. blends cranberry juice with apple juice in 500 gallon vats prior to bottling. The resulting blend is advertised to be 42% cranberry juice. A new supervisor accidentally blended a 500 gallon vat that was 24% cranberry juice. Rather than discard the entire 500 gallons, the supervisor decides to correct the problem by draining off some of the 24% blend and adding pure cranberry juice to strengthen the blend to 42%. Making sure to end up with 500 gallons, how much of the 24% blend should the supervisor drain and replace with pure cranberry juice to correct the mistake? *Round all answers to the nearest tenth of a gallon or nearest tenth of a percent if needed.*

1. $\underline{120}$ gallons of the 24% blend are cranberry juice, and $\underline{380}$ gallons are apple juice.

 $\frac{210}{210}$ gallons of the 42% blend are cranberry juice and $\frac{290}{200}$ gallons are apple juice.

2. Suppose we drain 50 gallons of the 24% blend and replace it with pure cranberry juice. Use the table below to determine the resulting percentage of cranberry juice in the blend.

description	total volume	% cranberry juice	volume of cranberry juice		
Starting mixture (gallons)	500	24%	120		
Drain 50 gallons of blend	-50	24%	-12		
Add 50 gallons of cranberry juice	50	100%	50		
Resulting blend	500	31.6 %	158		

 Redo the above table showing the results of draining 100 gallons of blend from the original 24% blend and replacing with pure cranberry juice.

description	total volume	% cranberry juice	volume of cranberry juice		
Starting mixture (gallons)	500	24%	120		
Drain 100 gallons of blend	-100	24%	-24		
Add 100 gallons of cranberry juice	+300	100%.	100		
Resulting blend	. 500	39.2 %.	196		

 Redo the above table to show the draining of x gallons of blend from the original 24% blend and replacing with pure cranberry juice to achieve a 42% blend.

description	total volume	% cranberry juice	volume of cranberry juice	1
Starting mixture (gallons)	500	24%	120	
Drain x gallons of blend	-X	24%	-024 x	
Add x gallons of cranberry juice	X	100%	+ 2,	
Resulting blend	500	42%	120-1-762	

- 5. What does the variable x represent?
 - a.) The percent of cranberry juice in the blend.
 - b.) The volume of cranberry juice in the original blend
 - c.) The volume of cranberry juice in the final blend.
 - d.) The volume of juice to be drained and replaced with pure cranberry juice.
- 6. Why are the volumes in the second row negative?
 - a.) Because they were not apple juice.
 - b.) Because gravity acts downward.
 - c.) Because they are being removed from the blend.
 - d.) Because the percentage of cranberry juice is too low.
- 7. In the table in #4, why is the coefficient of x in the 3rd row positive 1?
 - a.) You are replacing the drained juice with 1 gallon of cranberry juice at a time.
 - b.) You are adding pure (100%) cranberry juice.
 - c.) You are only adding one type of juice.
- 8. Use the last column of the table in # 4 to write a cranberry juice equation to solve for x. Your equation should show: Starting amount amount drained + amount added = desired amount
 - a.) 500 24 + x = 42 c.) 120 0.24x + x = 0.42
 - b.) 500 24x + 100x = 42d.) 0.24(500) - 0.24x + x = 0.42(500)
- 9. Solve your equation from #8 for x. $x = 118 \cdot 42$. This means that the supervisor should drain and replace 118 \cdot 42 pallons of blend with pure cranberry juice.

PART 1

247. of 500 = 120 contrary (24 × 500) remain 380 = apple

427. of 500 = 210 cranderry (42 × 500) remaining 2 90000 ogyple

PART 8 12.0+.762 = .42 500 120+.76x = .42 (500)